John Hopkins Graduate Student Housing

Technical Report 1

929 North Wolfe Street Baltimore, Maryland Brad Oliver – Structural Advisor: Professor Memari 9/23/2011

Table of Contents

Executive Summary
Introduction –
Structural Systems –
Foundations:
Floor Framing:7
Lateral System:
Building Code Summary –
Material Strength Summary –10
Load Calculations
Dead Loads11
Live Loads
Snow Loads –
Wind Loads –
Seismic Loads –
Spot Checks –
Conclusions –
Appendix A – Gravity Loads
Appendix B – Wind Loads
Appendix C – Seismic Loads
Appendix D – Column Spot Check
Appendix E – Post Tensioning Spot Check
Appendix F – Supplemental Drawings

Executive Summary -

Technical report 1 summarizes the structural systems found in John Hopkins Graduate Student Housing in Baltimore Maryland. All figures and photos found in this report are provided courtesy of Education Realty Trust and Marks Thomas Architects. This 20 story, primarily residential, building is supported through a concrete structure. Floors loads are supported with an 8" thick 5000 psi two way post tensioned slab. From there, gravity loads move to the varying strength columns typically 20"x 30". Columns take the load to the foundation which consists of 4000 psi caissons reaching depths of 91 feet. Gravity loads were calculated, summarized, and compared to the designed loads as well as building codes.

Lateral loads, wind and seismic, were calculated using ASCE7-05 standards. Wind loads were found to be larger in the East West direction producing a base shear of 600 kips and an overturning moment of 61,000 kip ft. Seismic loads will control this design though due to the weight of concrete construction. It was found that the North-South direction would control the design producing base shear of 1300 kips and an overturning moment of 179,600 kip ft. It was found that this is slightly higher than the designer's seismic calculation which could be due to conservative weight counting.

Spot checks were also performed on gravity members to ensure that they are adequate to carry the loads determined early on. A column with the largest tributary area and a post tensioned tendon with the longest span were chosen for analysis. Axial loads found in the column check on floor two, 2150 kips, were comparable to what the designer estimated at the foundation level, 2400 kips which verifies the weight and load calculations. Calculations show that the column and tendon were both adequate to carry loads and pass code limitations on stress.

Appendixes are also available at the end of this report providing hand calculations for every category. One appendix will also contain additional floor plans and elevations for context.

Introduction –

Located just outside the heart of Baltimore, 2 blocks from John Hopkins campus, is the site for the new John Hopkins Graduate Student Housing. This housing project is being constructed in the science and technology park of John Hopkins. A developing "neighborhood", the science and technology park is over 277,000 sq. ft. which is planned to host at least five more buildings dedicated to research for John Hopkins University. The site is also directly across from a 3 acre

Figure 1 - Showing glass and brick facade along with curtain wall

green space. This location is ideal because it places graduate students within walking distance of the schools hospitals, shopping, dining and relaxing.

John Hopkins Graduate Student Housing project is a new building constructed with brick and glass facades for a modern look. Upon completion, the building's main

function is predominantly for graduate residential use, providing 929 bedrooms over 20 floors. There are efficiencies, 1, 2, and 4 bedroom apartments available. Other features include a fitness room and rooftop terrace. A secondary function of the building is three separate commercial spaces located on the first floor. Retail spaces provide a mixed use floor, creating a welcoming environment and bringing in additional revenue. At the 10th floor, the typical floor size decreases, creating a low roof and a tower for the remaining ten floors. Glass curtain walls on two corners of the building also begin on the 10th floor and extend to the upper roof.

The façade of John Hopkins GSH is composed mainly of red brick and tempered glass with metal cladding. Large storefront windows will be located on the first floor and approximately 6' x 6' windows in the apartments. The curtain wall is to be constructed of glass and metal cladding that can withstand wind loads without damage. There is a mechanical shading system in the windows to assist in the LEED silver certification.

John Hopkins GSH is striving to achieve LEED silver certification. Most of the points accumulated to achieve this level come from the sustainable sites category. A total of 20/26 points were picked up in this category due to a number of achievements such as; community connectivity, public transportation access, and storm water design and quality control. Indoor air quality is the next largest category where the building picks up an additional 11 points

for the use of low emitting materials throughout

green area across the street for the use of low clinting matchais throughout construction. Several miscellaneous points are picked up for using local materials and recycling efforts as well. Shading mechanisms are also implemented throughout the design as well as an accessible green roof.

There are three different types of roofs on this project. Above the concrete slab on the green roof is a hot rubberized waterproofing followed by polystyrene insulation, a composite sheet drying system, and finally the shrubbery. The sections of roof containing pavers will be constructed using the same waterproofing, a separation sheet, the insulation and finally pavers placed on a shim system. The remaining portions of the roof will be constructed using a TPO membrane system.

Structural Systems -

Foundations:

A geotechnical report was created based on 7 soil test borings drilled from 80' to 115' deep. Four soil types were found during these tests: man placed fill from previous construction 7-13 feet deep, Potomac group deposits of silty sands at 40-75 feet, and competent bedrock at 80-105 feet. Soil tests showed a maximum unconfined compressive strength of 12.37 ksi. The expected compression loads from the structure were 2400k and 1100k for the 20 and 9 floor towers respectively. The foundation system will also have to support an expected uplift and shear force of 1400k per column and 180k per column. Based on preexisting soils and heavy axial loads it was determined that a shallow foundation system was neither suitable nor economical.

In order to reach the competent bedrock, John Hopkins GSH sits on deep caissons 71-91 feet deep. Caissons range in 36-54" in diameter and are composed of 4000psi concrete. Grade

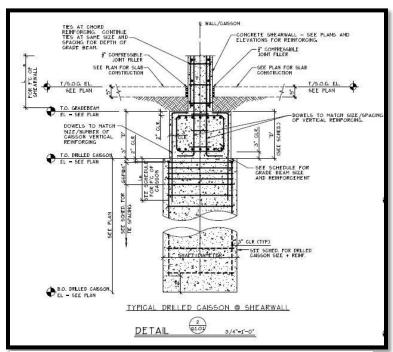


Figure 3 - a detail section of a caisson and column

beams, 4000psi, sit on top of the caissons followed by the slab on grade. Slab on grade consists of 3500 psi reinforced with W2.9XW2.9 and rests on 6" of granular fill compacted to at least 95% of maximum dry density based on standard proctor.

According to the geotechnical report, the water table is approximately 10 feet below the first floor elevation, therefore a sub drainage system was not necessary.

Floor Framing:

Dead and live loads are supported in John Hopkins GSH through a 2 way post-tensioned slab. The slab is typically 8" thick normal weight 5000 psi concrete reinforced with #4 bars at 24" on center along the bottom in both directions. The tendons are low relaxation composed of a 7 wire strand according to ASTM A-416. Effective post tensioning forces vary throughout the floor, but the interior bands are typically 240k and 260k. This system is typical for every floor except for the 9th which supports a green roof and accessible terrace. Higher loads on this floor require a 10" thick 2 way post tensioned slab reaching a maximum effective strength of 415k. The bottom layer of reinforcing in this area is also increased to #5 bars spaced every 18". One bay on the 9th floor (grid lines 7-8) is constructed with a 10" cast in place slab. Plans of this floor can be found in appendix F.

Mechanical penthouses exist on the 9th and 20th roof constructed with a steel moment frame. Typical sizes for the 9th floor penthouse are W10's and W12's with 1.5" 20 gage "B" metal deck. As for the 20th floor penthouse, the typical beam size is W16x26. Equipment will be supported on concrete pads typically 4" thick. Two air handling units and cooling towers on the roof will require 6" pads.

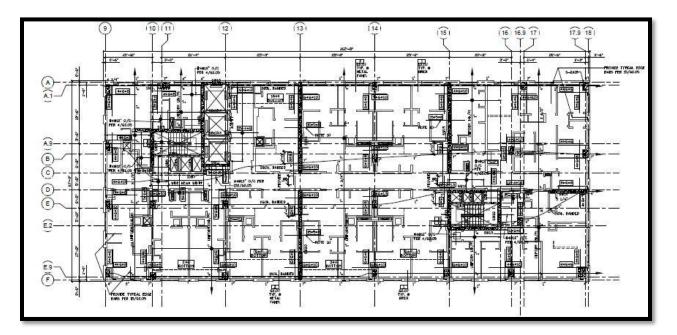


Figure 4 - Typical floor plan of upper tower

The loads will flow through the slab and reinforcement to the columns eventually making their way down to the foundation. To tie the slab and framing system into the columns, two tendons pass through the columns in each direction. To further tie the systems together, bottom bars have hooked bars at discontinuous edges. Dovetail inserts are installed every 2' on center to tie the brick façade in with the superstructure. Columns are typically 30"x20" and composed of 4ksi strength in the northern tower (9 floors), while columns in the southern tower vary from 8ksi at the bottom, and 4 ksi at the top.

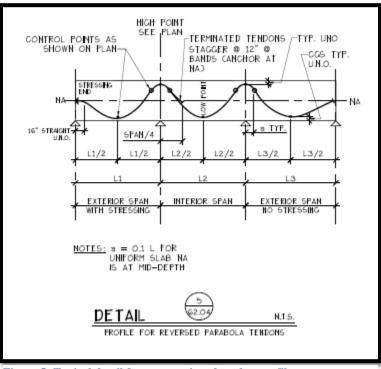
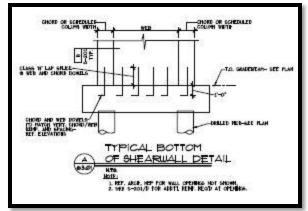



Figure 5- Typical detail for post tensioned tendon profile

Lateral System:

John Hopkins GSH is supported laterally through a cast in place reinforced concrete shear wall system. All of the shear walls are be 12" thick and are located throughout the building and around stairwells and elevator shafts. Shear walls in the 9 floor tower are poured with 4000psi strength concrete while shear walls in the 20 floor tower vary in three locations. From the foundation to 7th floor, 8ksi concrete was required, 6ksi from 7th to below 14th floor, and 4ksi for

walls above the 14th floor. The shear walls are tied into the foundation system through bent vertical bars 1' deep into the grade beam as shown in figure 6. Shear walls are shown below in the figure with N-S walls highlighted in blue and E-W walls red. Walls in the center of the building will support lateral stresses directly, while those on the end support the torsion effects caused by eccentric loads. Elevations of shear walls can be found in appendix F.

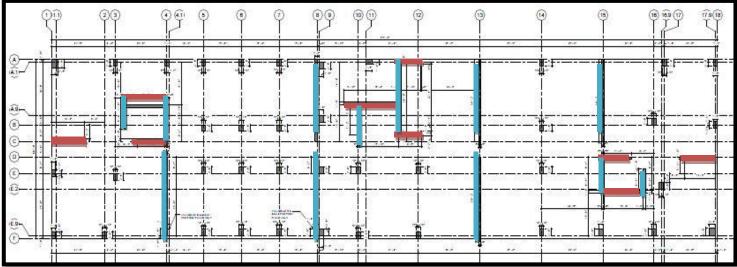


Figure 7 - Shear wall layout

Building Code Summary –

	John Hopkins GSH was designed to comply with:	My Thesis analysis/design will be based on:
General Building Code	IBC 2006	IBC 2006
Lateral Analysis	ASCE7	ASCE7-05
Concrete Specifications	ACI 301, 318, 315	ACI 318-08
Steel Specifications	AISC and AWS D1.1	AISC 2006
Masonry Specifications	ACI 530.1/ASCE 6	ACI 530.1-08/ASCE 6-08

Table 1- Building Code Comparison

Material Strength Summary –

Material Strengths						
Concrete						
Material	Weight (lbs/ft ³)	Strength (psi)				
Footings	145	4000				
Pile Caps	145	4000				
Caissons	145	4000				
Grade Beams	145	4000				
Slab-on-grade	145	3500				
Slabs/beams	145	5000				
Slab on metal deck	115	3500				
Columns	145	Vary-see schedule				
Shearwalls	145	Vary-see schedule				
Steel	-					
Shape	Grade	Yield Strength (ksi)				
W Shapes	A992	50				
S, M and HP Shapes	A36	36				
HSS	A500-GR.B	42				
Channels, Tees, Angles, Bars, Plates	A36	36				
Reinforcing Steel	GR. 60	60				

 Table 2 - Material Strength Summary

Load Calculations

Dead Loads-

The dead loads calculated in appendix A have confirmed the dead loads that were provided in the loading schedule as seen in table 3. It appears that the designer used ASD in their analysis because the total load does not have any factors applied to it. The analysis in this tech report will be LRFD which typically results in a more aggressive design.

	FLOOR	TH FLOOR	1167 1007	PENIMOUSE	EXTERIOR MEGNANICAL AREAS (MITH + 2000)	THE FLE PLANTER AVEAS
CONCRETE GLAS	300	125	1125	- 100 D	100-115	125
HETAL DECK	2.4%	1.142.3	1	2		
K/E/G/L			. 6		8	8
NEMBRANE	-	2 80 3	1 - 12 - 13	- 3 t - 8	194	
ROOTING	1.	2. 82	((R) (A)	- 14 - 15	191	-
NGLATION		10 M 1	1 10 3	4	100	27
FARTITION GAVE LOADD	Ð	2.40.3	1	- 94 - 13 - 14	1.00	
CASEN ROOF	4	30	30	- 04 - 13		
4" TOPTING SLAD		50	50	18 23	50	50
TOTAL DEAD LOAD	105	253	201	23	20-071	270
LIME LOAD	10	100	30	30	110	30
TOTAL LOAD	163	313	230	55	306-321	325
NOTES: 1. KL LIVE LOADS ARE 2. HO LIVE LOAD REDUC 3. TOTAL DEAD LOADS 4. LOADS IN SCIEDULE PROVISION FOR THE 1 MEDICAT TO THE AT 5. SEE PLANS FOR LOG 6. DEFTED AND SLIDBO	STON HAS D SO NOT IN LO NOT IN SUPPORT OF PEOPED HE TENTON OF ALIZED COM	EES TAKEN BE LUCE BECHT LLEE BECHTS THESE UNITS CHARGE, UNIT THE STRUCTU CENTRATED LO	TO AGGOURT. OF STEEL OR OF BOOF TO HAVE BEES F ONCE, WEEPFIE AA, ENGRETE AD,	PERMET FRAME P PEGIANAGAL WOE ON AR T ARD LOCATO	unis members. Unis die Kondul Bass No snul be	

Live Loads -

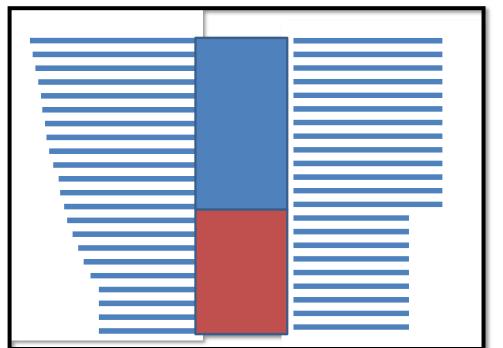
Figure 8 - Summary of loads used by designer

It seems John Hopkins used loads very similar to the ASCE7-05 standards. Exterior mechanical loads were not specified in the standard, but I am assuming the equipment can cause significant loads while operating. The 30psf on non-assembly roof areas is most likely a judgment call to account for the maintenance that would be required for a green roof. Although not specified on the table, the 100psf required in the corridor and stairwells are most likely balanced by the large banded post tensioned tendons running parallel to the corridor and around the stairwells.

Area	Designed for – (psf)	ASCE7-05 (psf)
Typical Floor	55 (includes partitions)	40 (residential) + 15 (partitions)
Corridors	N/A	100
Stairs	N/A	100
Assembly	N/A	100
First story retail	N/A	100
Roof used for garden/assembly	100	100
Exterior Mechanical areas	150	N/A
High Roof	30	N/A
Penthouse Roof	30	N/A
Planter Areas	30	N/A

Table 3 - Live Load Comparison

Snow Loads -


Snow loads calculated in this report confirmed those performed by the structural engineer. Drift was calculated on the 9th floor where the floor plan steps back and creates a low roof. A summary is provided below, and more detailed calculations can be found in appendix A.

Ground snow load	25 psf
Exposure factor	.9
Thermal factor	1.0
Snow importance	1.0
Flat roof snow load	16 psf
Drift Height	3.9'
Max Snow load	83 psf

Table 4 - Snow Load Summary

Wind Loads -

Wind loads for this analysis will comply with ASCE7-05 and used a simplified model of the structure. John Hopkins GSH did not comply with ASCE standards for a rigid building so gust factors had to be hand calculated. To make a more accurate model of the building it was split into two sections. This is seen below in the wind distribution where the blue section represents

the taller tower while the red represents the lower building. The lateral wind load is resisted through the 12" thick concrete shear walls discussed earlier. A summary of results in provided

Figure 9- loading diagram E-W direction

in the spreadsheets below while detailed calculations can be found in appendix B. Calculations show that wind in the East-West direction were larger with a base shear of almost 600 kips and an overturning moment of 61,000 kip ft. This makes sense when you look at the geometry of the building. The East-West direction has large amounts of area of façade which produce a larger story force. The highest base shear calculated in this building was 592 K producing an overturning moment of 60968 K ft in the East – West direction. This was to be expected due to the buildings extreme height and large façade facing the East – West direction.

Criteri	teria E-W Directio					irection	
Tall Tower		Floor	Height (ft)	Kz	qz	p (windward) (psf)	p(leeward) (psf)
Gf	0.83	Penthouse	208.42	1.21	21.327	18.00	-12.69
C _p (Windward)	0.8	Roof	194.25	1.19	20.974	17.70	-12.69
C _p (Leeward)	-0.5	20	183.9	1.17	20.622	17.40	-12.69
Gcpi	0.18	19	174.6	1.15	20.269	17.11	-12.69
Lower Tower		18	165.3	1.13	19.917	16.81	-12.69
Gf	0.84	17	155.9	1.12	19.741	16.66	-12.69
C _p (Windward)	0.8	16	146.6	1.1	19.388	16.36	-12.69
C _p (Leeward)	-0.5	15	137.2	1.09	19.212	16.21	-12.69
Gcpi	0.18	14	127.9	1.07	18.859	15.92	-12.69
		13	118.6	1.04	18.331	15.47	-12.69
		12	109.3	1	17.626	14.88	-12.69
		11	99.9	0.99	17.449	14.73	-12.69
		10	90.6	0.96	16.921	14.28	-12.69
		9	81.3	0.93	16.392	13.97	-9.84
		8	71	0.89	15.687	13.37	-9.84
		7	61.7	0.85	14.982	12.76	-9.84
		6	52.3	0.81	14.277	12.16	-9.84
		5	43	0.76	13.395	11.41	-9.84
		4	33.7	0.7	12.338	10.51	-9.84
		3	24.3	0.7	12.338	10.51	-9.84
		2	15	0.7	12.338	10.51	-9.84
		1	1	0.7	12.338	10.51	-9.84

 Table 5 - chart used for loading diagram

Overturning moment (k ft)

		E-V	V Direction		
Floor	Height (ft)	Height Below (ft)	Heigh Above (ft)	Trib Area (ft2)	Story Force (K)
Penthouse	208.42	15.2	0	1236.52	22.26
Roof	194.25	10.33	15.2	2076.87	36.77
20	183.9	9.33	10.33	1599.34	27.84
19	174.6	9.33	9.33	1517.99	25.97
18	165.3	9.33	9.33	1517.99	25.52
17	155.9	9.33	9.33	1517.99	25.29
16	146.6	9.33	9.33	1517.99	24.84
15	137.2	9.33	9.33	1517.99	24.61
14	127.9	9.33	9.33	1517.99	24.16
13	118.6	9.33	9.33	1517.99	23.48
12	109.3	9.33	9.33	1517.99	22.58
11	99.9	9.33	9.33	1517.99	22.36
10	90.6	9.33	9.33	1517.99	21.68
9	81.3	10.25	9.33	2099.45	29.32
8	71	9.33	10.25	2656.03	35.50
7	61.7	9.33	9.33	2531.23	32.31
6	52.3	9.33	9.33	2531.23	30.79
5	43	9.33	9.33	2531.23	28.89
4	33.7	9.33	9.33	2531.23	26.61
3	24.3	9.33	9.33	2531.23	26.61
2	15	14	9.33	3164.71	33.27
1	1	1	14	2034.75	21.39
rt used to c	alculate base	shear E-W direction		Base Shear (K)	592

Table 6 - Chart used to calculate base shear E-W

	N-S Direction								
Floor	Height (ft)	Height Below (ft)	Heigh Above (ft)	Trib Area (ft2)	Story Force (K)				
Penthouse	208.42	15.2	0	509.2	9.38				
Roof	194.25	10.33	15.2	855.255	15.50				
20	183.9	9.33	10.33	658.61	11.73				
19	174.6	9.33	9.33	625.11	10.95				
18	165.3	9.33	9.33	625.11	10.76				
17	155.9	9.33	9.33	625.11	10.66				
16	146.6	9.33	9.33	625.11	10.47				
15	137.2	9.33	9.33	625.11	10.38				
14	127.9	9.33	9.33	625.11	10.19				
13	118.6	9.33	9.33	625.11	9.90				
12	109.3	9.33	9.33	625.11	9.52				
11	99.9	9.33	9.33	625.11	9.42				
10	90.6	9.33	9.33	625.11	9.14				
9	81.3	10.25	9.33	655.93	9.42				
8	71	9.33	10.25	655.93	9.01				
7	61.7	9.33	9.33	625.11	8.20				
6	52.3	9.33	9.33	625.11	7.82				
5	43	9.33	9.33	625.11	7.34				
4	33.7	9.33	9.33	625.11	6.76				
3	24.3	9.33	9.33	625.11	6.76				
2	15	14	9.33	781.555	8.45				
1	1	1	14	502.5	5.43				

Base Shear (K)

Overturning moment (k ft)

207

23882

60968

Criteri	a				N-S Di	rection	
Tall Tower		Floor	Height (ft)	Kz	Qz (psf)	p (windward) (psf)	p(leeward) (psf)
Gf	0.855	Penthouse	208.42	1.21	21.327	18.43	-8.94
C _p (Windward)	0.8	Roof	194.25	1.19	20.974	18.12	-8.94
C _p (Leeward)	-0.28	20	183.9	1.17	20.622	17.82	-8.94
Gcpi	0.18	19	174.6	1.15	20.269	17.51	-8.94
Lower Tower		18	165.3	1.13	19.917	17.21	-8.94
Gf	0.87	17	155.9	1.12	19.741	17.06	-8.94
C _p (Windward)	0.8	16	146.6	1.1	19.388	16.75	-8.94
C _p (Leeward)	-0.2	15	137.2	1.09	19.212	16.60	-8.94
Gcpi	0.18	14	127.9	1.07	18.859	16.29	-8.94
		13	118.6	1.04	18.331	15.84	-8.94
		12	109.3	1	17.626	15.23	-8.94
		11	99.9	0.99	17.449	15.08	-8.94
		10	90.6	0.96	16.921	14.62	-8.94
		9	81.3	0.93	16.392	14.36	-5.80
		8	71	0.89	15.687	13.74	-5.80
		7	61.7	0.85	14.982	13.12	-5.80
		6	52.3	0.81	14.277	12.51	-5.80
		5	43	0.76	13.395	11.73	-5.80
		4	33.7	0.7	12.338	10.81	-5.80
		3	24.3	0.7	12.338	10.81	-5.80
		2	15	0.7	12.338	10.81	-5.80
		1	1	0.7	12.338	10.81	-5.80

Table 8 - chart used to calculate loading diagram

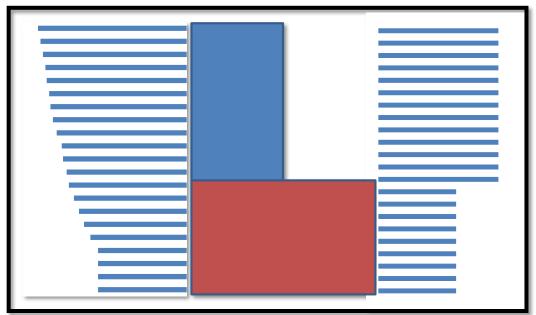


Figure 10- N-S loading diagram

Seismic Loads -

Seismic loads were calculated following ASCE7-05 provisions. Figures in chapter 22 were used to calculate the S_s and S_1 values of 16% and 5% respectively. However the geotechnical report found values of 17% and 5.1% for the site which was used in this calculation since it is most likely more accurate. It was also found that the North South direction controlled for seismic based on C_w values calculated in both directions. After a few calculations, John Hopkins GSH site was classified as seismic category A which would allow a basic procedure described in 11.7. In this calculation though a more precise answer was desired so equivalent lateral force method was used. The weight was calculated per floor and then distributed to each floor based on C_{vx} The total base shear was added up and found to 1345 k which is significantly higher than the 900k found by the structural engineer. Sources of error for this area could be due to double counting of concrete at intersections. Members are monolithically poured which would decrease the weight of concrete calculated. Also the areas of opening in the slab and shear walls were not subtracted out of the concrete count to be conservative. Detailed weight calculations can be found in Appendix C.

	Seismic Force Distribution								
Floor	Height (ft)	Weight (k)	(wxhx) ^k	Cvx	Fx (K)	Overturning Moment (k ft)			
Penthouse	208.42	78.026	5468723.63	0.001	1.31	273.44			
Roof	194.25	1545.463	580592502.50	0.104	139.29	27056.39			
20	183.9	1590.959	557166693.58	0.099	133.67	24581.26			
19	174.6	1549.912	491770018.95	0.088	117.98	20598.88			
18	165.3	1549.912	450534269.61	0.080	108.08	17866.44			
17	155.9	1554.448	412169358.01	0.074	98.88	15415.55			
16	146.6	1554.448	373539273.67	0.067	89.61	13137.34			
15	137.2	1554.448	335960714.09	0.060	80.60	11058.09			
14	127.9	1554.448	300271966.82	0.054	72.04	9213.46			
13	118.6	1554.448	266107686.89	0.047	63.84	7571.46			
12	109.3	1554.448	233514673.95	0.042	56.02	6123.10			
11	99.9	1529.824	197120200.84	0.035	47.29	4724.26			
10	90.6	1534.792	169466694.76	0.030	40.66	3683.41			
9	81.3	2557.037	322495821.95	0.058	77.37	6290.02			
8	71	2643.302	273809311.53	0.049	65.69	4663.84			
7	61.7	2574.841	209728247.52	0.037	50.31	3104.41			
6	52.3	2574.841	160991656.00	0.029	38.62	2019.96			
5	43	2574.841	117692881.09	0.021	28.23	1214.10			
4	33.7	2565.337	79220744.86	0.014	19.01	640.48			
3	24.3	2565.337	46946272.77	0.008	11.26	273.68			
2	15	2565.337	21695871.23	0.004	5.20	78.07			
	Sum	39326.4	5606263584.25		Base Shear (K)	1345			
	Base Overturning moment (k ft) 179588								

Table 9 Seismic Table used to calculate base shear

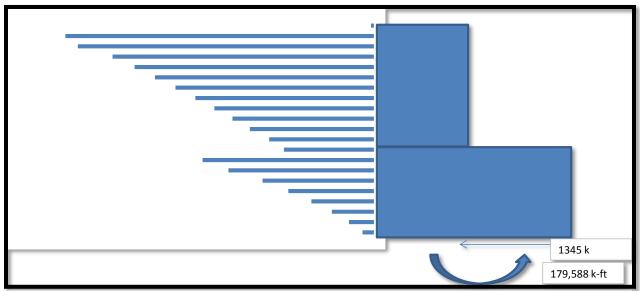


Figure 11- loading diagram seismic

Spot Checks –

Gravity spot checks were performed to test the axial strength of columns and the strength of post

tensioned tendons. These checks were performed using Load and Resistance Factored Design (LRFD). In the geo technical reports, compression loads produced by the buildings were expected to be 2400 kips. Column E 14 was analyzed at the second floor and found axial loads to be almost 2150 kips which means the load calculations were accurate. It was found that the column was sufficient to support the loads assuming pure compression and

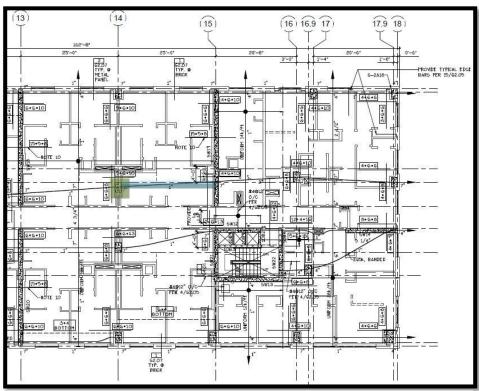
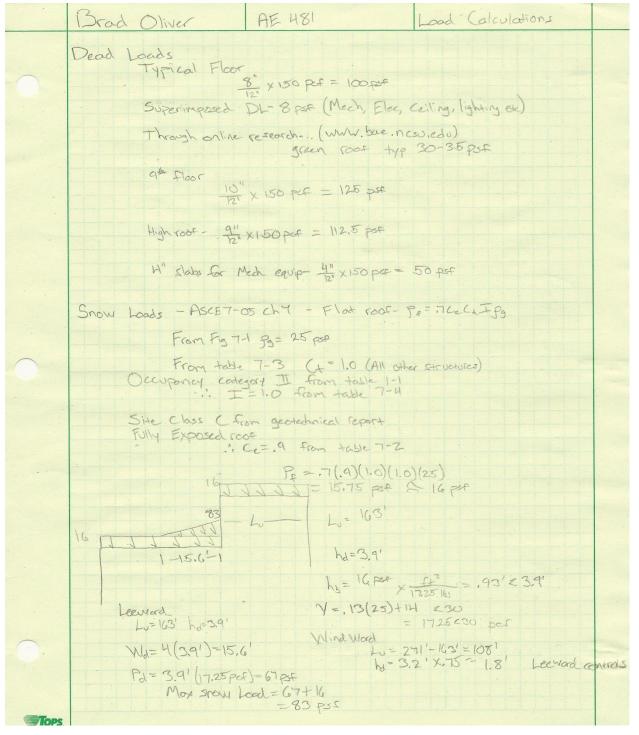


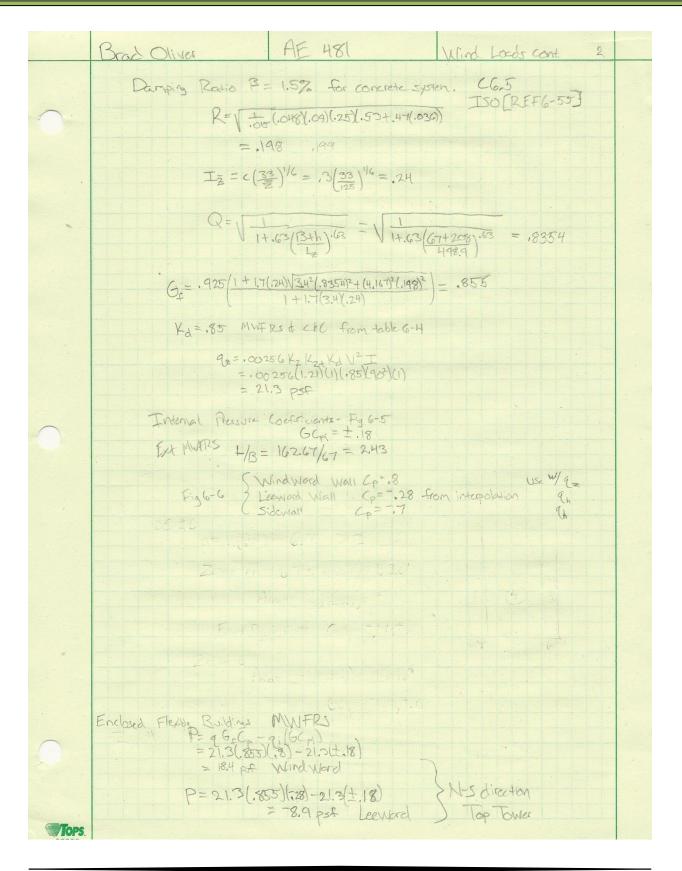
Figure 12 - Area used for spot checks

minimum eccentricity. This column was chosen because it has the largest tributary area in the building and near the bottom of the building, supporting the most weight.

A spot check was also performed for the post tensioning along grid B between 14 and 15 as seen in figure 12. This tendon was chosen for analysis because it has the longest span between supports and is also located near the main corridor supporting the largest loads in the structure. The post tensioning was found to be adequate in design and complied with all codes regarding applied stresses to the slab. A major assumption made during this analysis is that the tendon does not curve. This would require advanced analysis techniques that could be implemented in later tech reports.

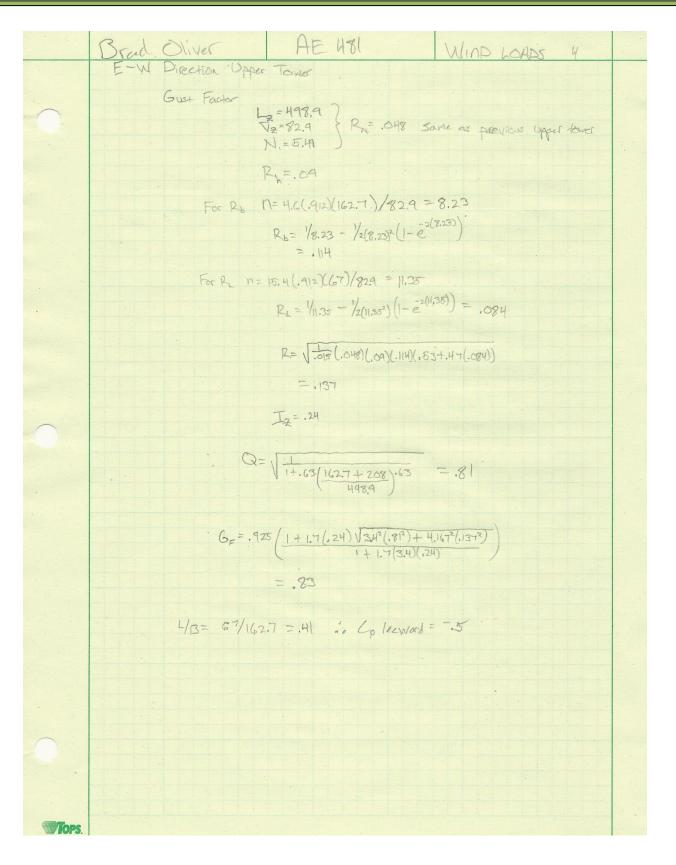

Conclusions –

The main goal for technical report 1 is to gain an understanding of the existing structural system and understand how the loads will be resisted. John Hopkins GSH housing is primarily a concrete structure. Vertically, loads travel from the post tensioned slab to reinforced columns and down to the foundation of deep drilled caissons. Laterally, loads will be supported through high strength reinforced concrete shear walls in the four cardinal directions. Dead and live loads were calculated by hand or found in codes, and then compared to the structural engineers design with discrepancies being addressed along the way. It appears that the designer of this structure used ASD analysis, but this tech report and future reports will be based on LRFD calculations which could result in less conservative results.

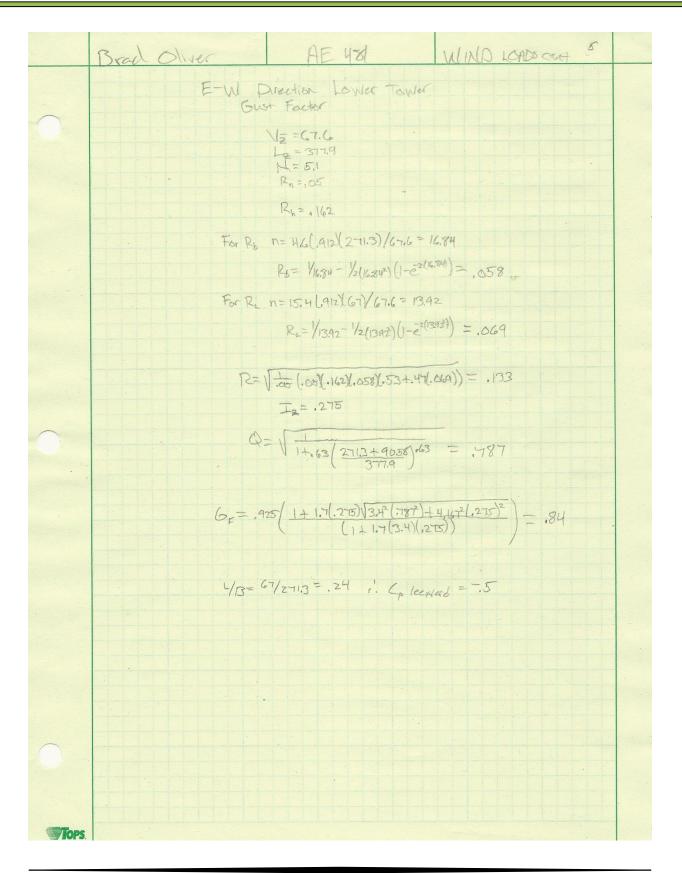

Lateral loads were calculated using ASCE7-05 standards. Winds were calculated using method 2 as addressed in chapter 6, while seismic loads were determined using chapters 11 and 12. Wind loads were largest in the East-West direction which makes sense due to the large amount of façade exposed in this direction. Seismic loads were found to control the overall design however with a base shear of 1345 kips in the North-South direction. It makes sense that seismic would control the lateral design of this building due to its weight. A pure concrete structure is extremely heavy and creates large inertial forces when ground motion occurs.

Vertically, spot checks were performed in load critical areas on a column and post tensioned tendon. Loads supported by the columns were found to be close to those estimated in the geotechnical reports at 2150 kips. Calculations showed that in pure axial compression, the column strength is 2500 kips at the second floor and adequate to support the load. This takes into account phi factors and a coefficient for minimum eccentricity. The post tensioned tendon was checked for strength per tendon, balanced self weight and eventually stresses in the slab were compared to those allowed by code. Both spot checks proved that the current systems in place are adequate to support Johns Hopkins Graduate Student Housing.

Appendix A – Gravity Loads



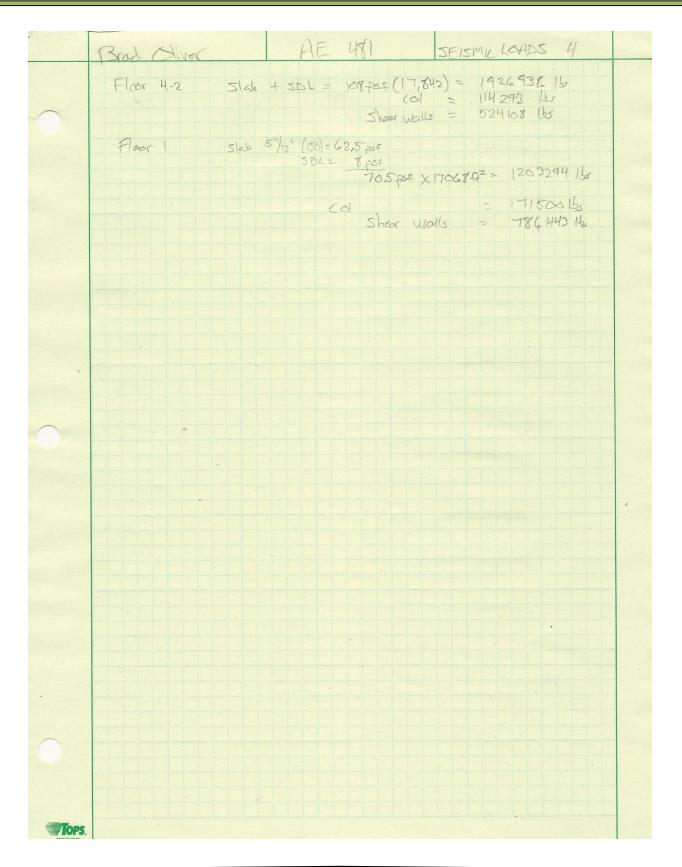
Appendix B – Wind Loads



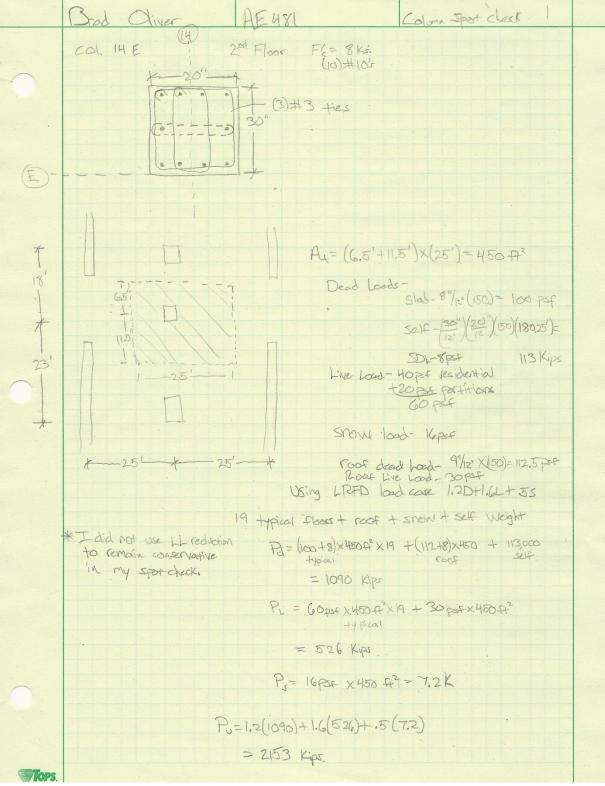
	Brad	Olivier	AE 481	WIND LOADS 3	
	N-S	direction lower	tower		
0		Gust Factor	$20(90.55(.6))^{1/3} - 377.9$		
			$45\left(\frac{55.25}{33}\right)^{1/4}\left(40\right)\left(\frac{88}{60}\right) = 67.$	6	•
		N.=	(33) (10(23)) (412(377;4) = 5.1 (7.6)		
				*	
			1.47(5.1) = .05 1+10.3(5.1) ^{5/5}		
		For Rh n=4	((.412)(90.53)(67.6) = 5.62 = $1/5.62 - \frac{1}{2(5.62^{2})}(1 - e^{-3(5.62^{2})})$)162	
			= 15,62 2(562) .6(.912)(67)/67.6 = 4.16		
		FOR KG NEH	$ = \frac{1}{4}, 16 - \frac{1}{2}(4, 16^{2})(1 - \frac{-2}{2}(4, 16)) $	=,211	1
			15.4(.412)(271.3)/67.6 = 56		
			RL= 156.4 - 1/2(56.42) (1-E215	641) = .018	
			5).12)(.21)(.53+.47(.018)) = .	248	
		J_2=	3(33) 1/4 = ,275		
		$Q = \sqrt{\frac{1}{1+\frac{1}{2}}}$	(3(67+40.58)(3) = .857		
		GF= .925/1+	$\frac{1.7(.275)\sqrt{3.4^2(.857)} + 4.167^2(.75)}{1+1.7(3.4)(.275)}$.87	
		4 - 1	Masteries - 16, 4, 45		
				LIK	
		R=1(n)			

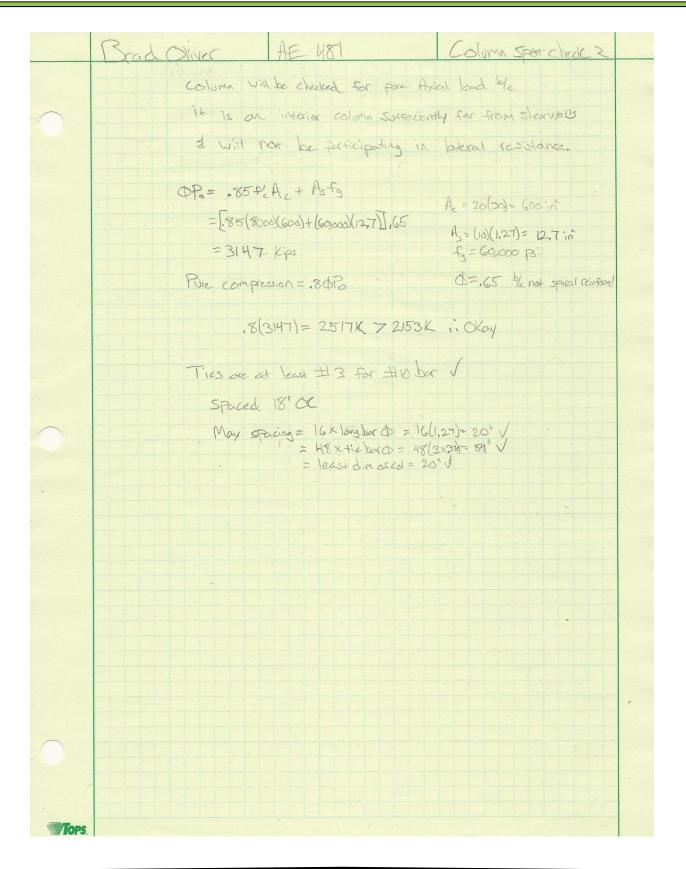
Technical Report 1

Technical Report 1

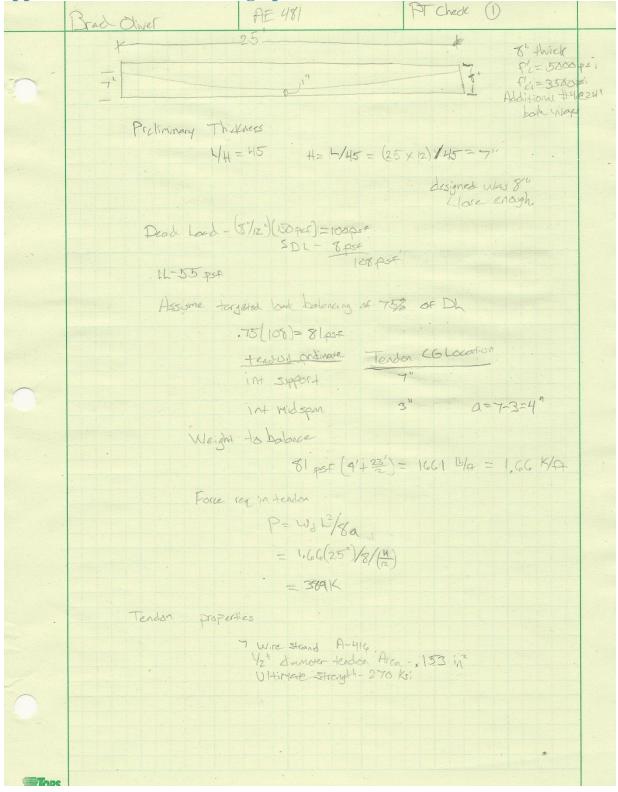

Appendix C – Seismic Loads

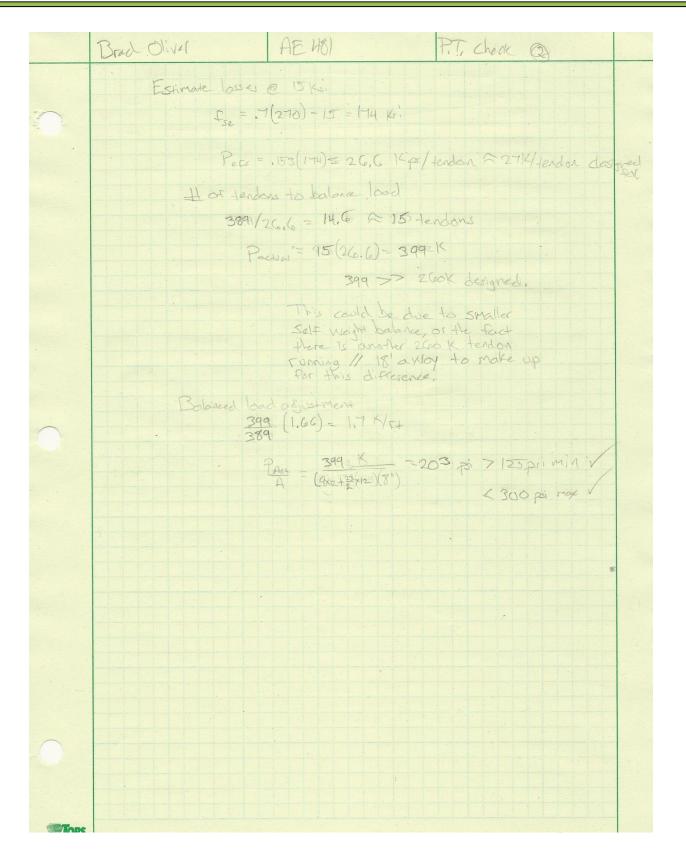
$$\begin{array}{c|c} \hline Brad Oliver & AF 481 \\ \hline SEISPIC LOADS 1 \\ \hline Technal report {S=171%3} & 71 \\ \hline She Chee C back or goverhated report \\ \hline Using NN-3 & Sing = F_{2}S_{2} = 1.2(.171) = .2652 \\ \hline Sini = F_{2}S_{2} = 1.2(.651) = .0867 \\ \hline Sog = 7/5 Sini = 7/3 (.050) - .1368 \\ \hline Sog = 7/5 Sini = 7/3 (.050) - .1368 \\ \hline Shi = 7/3Sini = 7/3 (.000) - .0578 \\ \hline Triperbake = 1.00 hard a I accupancy \\ \hline Table NL6-2 \\ \hline Sog = .0578 = .0678 - .067 : . Category A V \\ \hline Table NL6-2 \\ \hline Sog = .0578 = .0678 = .0677 & Category A V \\ \hline Table NL6-2 \\ \hline Sog = .0578 = .0342 \\ \hline Category Contact report \\ \hline C_{2} C_{1}V \\ \hline C_{3} = Sini = .0778 < .1 \\ \hline Table NL6-2 \\ \hline C_{2} = .0218 \\ \hline C_{3} = .0218 < .101 \\ \hline C_{4} = .0218 \\ \hline C_{4} = .0218 \\ \hline C_{5} = .021 \\ \hline C_{5} = .021208 \\ \hline C_{5} = .021 \\ \hline C_{5} = .021208 \\ \hline C_{5} = .021208 \\ \hline C_{5} = .0218 \\ \hline C_{5} = .021208 \\ \hline C_{5} = .0218 \\ \hline C_{5} = .021208 \\ \hline C_{5} = .0218 \\ \hline C_{5}$$

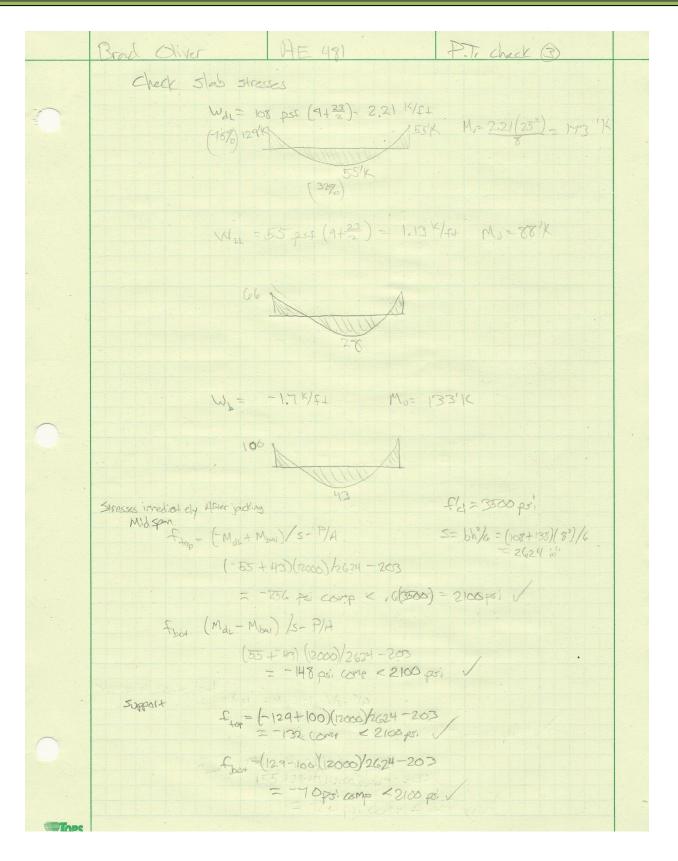

Brad	Oliver	AE 481	SEISMIC LOADS 2	
	Calculation			
	membrai	2 psf md - 8 psf - 6 psf - 6 psf X - 6 psf X 3 psf X 3392 ft	2 = 78,026 lbs	
	Aligh Roof- Slab 9"/1: Superimpo	12(50) = 112.5 psf sed = $\frac{8 \text{ psf}}{120.2 \text{ psf}} \times 10^{-10}$,805 Q2 = 1,298,761 Ks	
			805-3392)= 222,390 lbs	
	HSS COL	1×4×1/4-12.21 165/5+×151 = 6×6×1/2-35.24 165/6+×151 =	183 b ×4 60 = 733 b 529 b	
	Floor 20- Shb- 8 Super In	$\frac{1}{12!} (50) = 100 psf$ $\frac{1}{100} psf$ $\frac{1}{100} psf \times 100 psf$	0,805.F3 = 1,166,940 lbs	
	- Columy	$\frac{30''}{12''} \times \frac{20''}{12'} \times 10.33' \times 10^{-3}$	50 pef=6,458 lbs x 10 - 6,4581 lbs	
	Shear Vall#	$\begin{array}{c} -9 & -1' & (22,17)(10,33') \\ +0 & -\frac{9''}{12} & (9'6) & (10,33') \\ +1 & -1' & (16) & (10,33') \\ +1 & -1' & (11') & (10,33') \\ -3 & 1' & (12,1') & (10,33') \\ +1 & 1' & (12,25') & (10,33') \\ \end{array}$	×150 per= 9,816 155 = 4,816 155 ×156 per= 17,044 155 153 per= 25,877 165 50) = 18,981 155	
	110 116 116 117 117 117 117 117 117	1' (20.67')(10,33')(1 ? 1' (30.17)(1933)(1)	= 19044 1br = 41,325 1bs = 46,748 1bs = 46,748 1br = 46,748 1br = 46,748 1br = 20,918 1br	
	#21 #22) = 12,396 L	
Tops.				

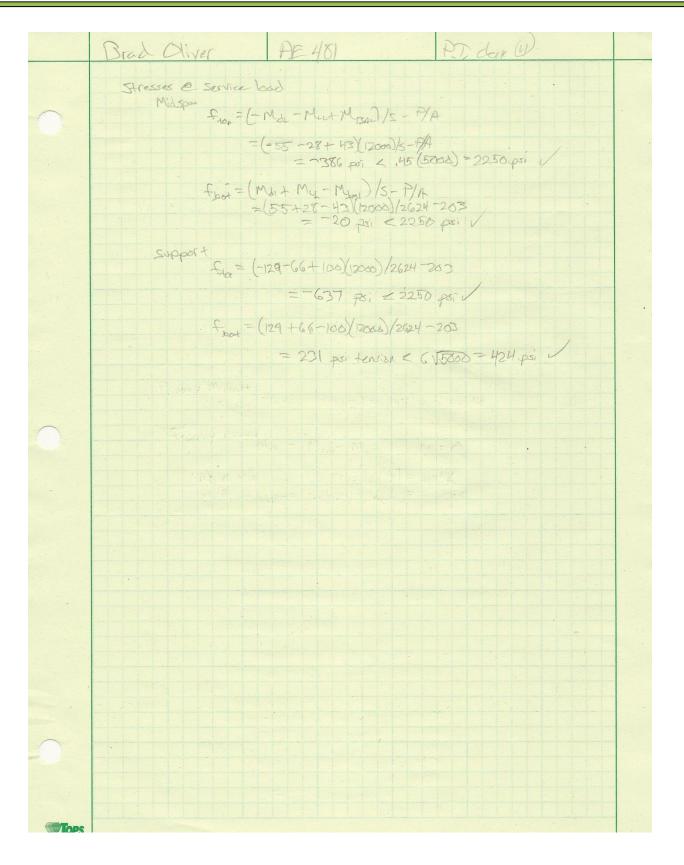

Technical Report 1

	Brad Oliver	AE 481 SEISMIC LOADS 3	
	Floor 19-18		-
	Sla	6 - 3"/12'(150) = 100 psf	
		SDN = 8755 108 psr × 19805 22 = 1166 940 NJ	
	C	Slumns- used accel spread sheet 68,832 br Same dim different knoth	
		hear walls used excel sprandsheet 314141 lbs	
	Floor 17-12		
		Slab - 100,psf	
		SPL- Spst Indose x Indug = 11-71471. Is	
	NTTTTT	SDL- 8 psf 108 psf × 10,847 = 117,1476 Ks	
		Cd - Same Has Flor 18-19 68,831 lbs	
		Stea Walls " 314, 14/135	
	Floor Il		
		Slab & SDL = 108 psf × 10/619 = 1146852 lbs	
		(2) = 68,831 + 153	
	Floor KS	Shear Wall = 314,141 lbs	-
	1100 10	Slab & SDL = 108 psq × 10,665 = 115 1820 160	
		col = 68,831 [b] sleet = 314,141 [b]	
	10	. Slex = 319,141 [5]	
	Floor 9	SLAB& SDL gridg-18 = 108pse × 10,665 = 1151,820 125	
		COI = 68,831 bs Shearwall = 314,141 bs	
-		Shearwall = 314,141 lbs	
		Slab grid 7-8 = 70/2 (15,67)(67)(50) = 131,236 (b)	
		-1.6 - 10/10 (92.35) (1/15) = 77326H 120	
		green root- 30per x (26,3×43+19×923)= 86,538 Hu	-
		green root- 30pst x(26,3×43 + 19×923)= 86,538 kbs Plenter Arcas-50pst x 30042 = 15,000 lbs H" pads -50pst x 30042 = 15,658 lbs H" pads -50pst x 31342 = 15,658 lbs HSS 4k4X/4 12,21 lb/4 (A.33) = 1141 lbs x2-228 lbs	
		HSS 4x4x 1/4 12.21 16/4 (A.33) = 1141 16/ X2 = 228 165	
		6×Gx1/2 35.24 4/2 (9.33) = 329 bs	
	Floor O	1ab. \$ 502-107 pf x 17,930= 1936440 Hs	
	2	(d) = 126574 /h.	
		Col = 126574 /bs Shearwalls = 580283 /bs	
~···	Floor 7-5		
		slab t SDL- 108 PSF × 17,920 = 1926440 Hur	-
		COI = 114243 W Shear Walls= 524108 Ib	
			_









Appendix E – Post Tensioning Spot Check

Appendix F – Supplemental Drawings

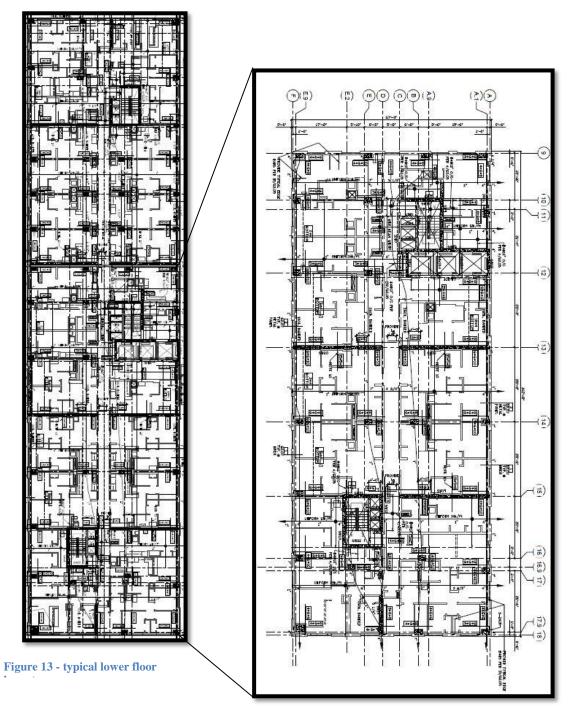


Figure 14 - typical upper floor layout

1	COLUMY SCHEDULE																													
THIHOWAK MOD	/	м/п	4/4 4/5 4/5 4/5 4/5 5/5 5/5 5/5 5/5 5/5	80.000 A	1/2	4/8 1/5 1/6 1/7	F/S	2/21	7/4	4/12	а/ы а/П	A/28	444 1/14	8/16 8/14	6/10 17/12 17/14	E2/663	1/1	F/10 F/18 F/18 F/18 F/18 F/18	r/20	4494 1499	ŝ	and State in the	12	13	h	Sund Service	N	P	h	м
00#		Х	Х	X	Х	X	X	X	3										_	Х	Х	X	100 mec/4		440 440/4	Cock He seed	teres and	The reality	\times	\ge
an neos	NUT NUT	Х	Х	\mathbb{X}	X	\mathbb{X}	\mathbb{X}	\times	80°89' 80 -1 1	80'+90' 80'+90'	60 -4 1	60-14 30,490,	60 -11 60-11	60 -11 80'48'	80°481' 600-141	80%alf 8048	60-11 80'40'	30°40° 09-44	95,490,	\times	${ imes}$	$>\!\!\!>$	arber wer ewarten w/e-Witalsol-tof Long Alener Kons	12"CETAN" BASERAD 8/4-16"DLast-co" Long wence forg	27337052623. RAT V/4-5732407-57 108 HEADED STUB	E SPRANK ENERGE V/s-Bridse-sp UNE Alege Res	2002'00' BARPLATE 10/6-30'BLac/-60' LONG ARCHOR ROAG	EZNERNEDALD, HAR W/R-BUTHLACHS' LOB BEARED STUDS	\sim	\geq
1H IL00#	927 1111	Х	Х	X	Х	X	Х	Х	80°85' 60 -1 1	80%30° (83 -41	60 -4 1	30'40' 30 -11	30'40' 63 -14	50°40' 60 -11	80°65' 63 -14	30°63' 60 -11	30%do* 60-41	80%80" 00 -4 4	347430' 0,03 -1 40	Х	Х	\times	1973), CONC. PUE 1974), CONC. PUE 1974), CONC. AND TEL 1974), CONC. AND TEL 1974), CONC. AND TEL 1974), CONC. AND TEL	18°08° COR, PER 97466 (DT. AD TE: 170 AREPAE (S AR	\geq	\geq	9930° SONG AND 17465 IEEE AND IEE PER AGHERINE AS AND	$>\!\!\!>$	\geq	\geq
IH FLOOK	HTT.	Х	Х	\mathbb{X}	X	\mathbb{X}	X	Х	ao'ao' ao-in	ao'ao' ao-fh	30'40' 00-in	30'40' 03- 1 1	30'40' 30- in	30°40' 00-11	30'45' 30-11	30°40' 00-11	30'40° 30-11	30%ad* 00-11	36%30" 003-800	\boxtimes	\ge	\geq	\geq	\geq	\geq	\geq	\geq	\geq	\geq	\geq
THI FLOOK	in.	\times	Х	\mathbb{X}	\boxtimes	\boxtimes	\boxtimes	\boxtimes	30'40' 00-11	20%20' 20-41	90,462, 90,462,	1.1023	90 -11 90'49'	60 -41 50%85*	80've9' 60-M	80°80' 80° 41	60- 41	80%80° 931- 11	-N'930" 000- 0 00	\boxtimes	\boxtimes	\geq	\geq	\geq	\geq	\geq	\geq	\geq	\geq	\geq
an noor	99 101	\ge	\ge	\times	\times	\boxtimes	\ge	\boxtimes	60%89/ 60-44	85'830' (83 -11	60%80/ (63-44	0.0925	30'45/ 633 -11	60%65* 50%65*	60763* 60743*	80%85° 60 -41	50%00° 60-44	80%80° 083-11	597650" (200- 8 50	\boxtimes	\boxtimes	\geq	\geq	\geq	\geq	\geq	\geq	\geq	\geq	\geq
m rucer	an An	X	Х	\times	X	\times	\times	\times	60°45' 60 -11	65'450" 03- 11	60740' (60-44	0.001	50/60" 00-14	80°88" 80 -11	80'485' 80 -11	00-40 00-41	30"x80" 60-41	80°40) 60-44	34°630" 0,03 -1 93	\ge	Х	\geq	\geq	\geq	\geq	\geq	\geq	\geq	\geq	\geq
ni facek	arr.	Х	X	X	X	\times	X	Х	80%85/ 60 -41	20%50" 03 -41	60%857 (6) -4 4	_	80/40' (8)- H	00- 11	80°185' (83-14	80°40' 80 -11	60- 41	80%20" 883 -44	36'130' 0.03 -8 00	X	Х	\ge	\geq	\geq	\geq	\geq	\geq	\geq	\geq	\geq
IF NOOF	un.	Х	X	X	X	X	X	X	60°x00' 60-11 forsbi	20"250" (3)-44 73-60		30°d0' 03-41 61-44	50%20 03-14 f2-84	50°40' 00-11 11-66	sofias" 663-M forebi	50%85" 03)-11 for 614	50'x80' 683-11 fo=684	60%20" (2)- 11 fo mbo	36%30" 000-140 for@a	X	Д	\geq	\geq	\geq	\geq	\geq	\geq	\geq	\geq	\geq
III FLook	42P 1111	Д	Х	X	X	X	\times	X	33%d0" 633-11 fo-68a	20"x30" 033-414 f12-684			50%20" 03- 11 ft-6ka	30%85" 025-14 172-618	sofies" co-M fo-sta	30%20" (2)-44 ft-442	30%00" 600-111 fo-ske	30%80° 03-11 10-94	36%30" 003-\$10 fo-\$88	X	X	\geq	\geq	\geq	\geq	\geq	\geq	\geq	\geq	\geq
1F 16.000	tti.	Х	Д	X	X	X	X	Х	30'40' 63-44 70-64	20"x30" (3)-44 fu als	aonao' ao-44 ronsta	30'40' 01-11 fuile	50%20' (3)-14 funded	sofias" GD-14 Foreita	30°485' 663-14 Foreisa	50°-80° 60-44 Forsia	30'd0' 00-11 fo-64	50%20" (2)-14 fo=14	36°x30° 0203-020 70-040	X	Д	\geq	\geq	\geq	\geq	\geq	\geq	\geq	\geq	\geq
IH Nook	421 ittr.	Д	X	X	X	X	\ge	X	30'40' 60-41 fo-64	20'00' 03-44 11-44	30'40' 60 -14 fo-64a	30'40' (3)-11 11-44	30%80° 633-64 172-644	30'100' 000 -14 71-68	ao'ao' 665-14 Ya-61a	30'403' 033-44 70-61a	so'atti" dat-41 fo-48a	20'400' 003-00 10-004	36°430° 1003-860 Fo-484	\boxtimes	X	form an every	\geq	\geq	\geq	\geq	\geq	\geq	Alles 10401/4	A400 000%
1.004	ittt.	X	X	X	X	\times	\times	X	ao'ao' ao-41 fo-61a	20 ¹ 40 ⁴ 03-11 71-14	ao'ao' ao 44 ro-61a	30'40' (6)-11 11-444	30/40) (0)-11 fi-144	30'63' 00-14 76-61	achao' co-M fo-éta	30'-00' (2)-11 70-614	achao' ao-41 fo-ille	30/400 ⁴ 100 -14 10-644	36°k30° noo-kao noo-kao	X	\ge	1	\geq	\geq	\geq	\geq	\geq	\geq		and a second
H PLOOR	din.	geo-ho as'ao'	30'40' (8)- 11	50%20' (25- 1 %	30'40' (0)- in	30'40' 30- 11	30'40' 00- 1 1	X	30'40' 00-11 10-404 80'40'	20"420" 023-01 1"4-040 20"950"	30%80' 00-44 1'0-644 30%89'	30' 40' (8)-11 FL-164 30' 480'	30%80° 833- 1 1 61-988	30"40" 00-100 10-60	30°43' 30-120 70-664 30°423'	30°-80° 00-11 16-66	30'40° 40-11 10-944 30'40°	30%83" 833- 11 66-848	36"430" 003-800 76-664 36"430"	\bowtie	co-fr	NAP ACTOR TOP ALT-ALTRICE TOP ALT-ALTRICE TOP	\geq	\geq	\geq	\geq	\geq	\geq	units which the	LONG ALCHOR BODS
IH PLOOR	421 1111.	30'00' 30'-110 30'-01	30'40' 43- 1 1 30'40'	30'40' (3)- 1 1 30'40'	30%20" 30~9] 30%20"	an-11	80'485' 032 -87	X	00-44 fo=94	60-44 fc-44	00-44	00-01	03-11 freihi	30°x83° 633-630 fu=614	(8)-40 To-60 30'40'	03-11 fo-14	00-01 fo-Mai	30%80° 003-14 15-144	0.03-000 Fo-66 36%30*	\bowtie	30'40' 30 -in 30'40'	\simeq	\geq	\geq	\geq	\geq	\geq	\geq	N/46 VOIL AND THE THE SCREWE CO HILL	20'00" CONC. PDF 10/446 VEN. AD TEL PR: SCHEME CS HILL
H FLOOR	im. Att	36/40°	20'40'	05-P1	30'40' 30'40'	30'40' 00-41	30'40' 00-01 30'40'	X	30'40' 40-11 fo-644 30'40'	20"430" 00-01 76-04 20"430"	20'40' 00-01 70-04 20'40'	30°40° 00-81 75-84 30°40°	30%00' 03-01 72-04 30%00'	30'40' 00-130 74-04 30'40'	00-00 70-04 30'40'	30'40' 00-01 74-04 30'40'	30'40° 60-11 74-64 30'40°	30'40' 03-11 64-04 30'40'	0201-010 fu-64	X	30'40'	\simeq	\geq	\geq	\geq	\geq	\geq	\geq	\geq	\geq
I Root	1117. 421	()00 -81 0	00-40	00-49	a)-ar	00-01	00-61	X	AD-21 Faulta	CO-01 Faulte	do-th Failed	CO-41 Faulted	faile	CO-EG Failed	GO-BIO Failled	00-01 Failed	dia an Facilita	Co-21 Failed	funded Aufsati	\bigotimes	30,400,	\approx	\leq	\gtrsim	\geq	\geq	\approx	\leq	\approx	\geq
IH PLOOR	un. stt	30,490, 30,490,	30'40'	30%00" 33~ T 1 30%00"	30%00" 30%00"	30'-00' 30-00' 30'-00'	30'40' 30'40'	X	30'-00' 00-71 76-800 30'-00'	20"530" (32-37) 1"5-654 20"530"	30°40' 00-01 70-014 30°40'	305.00*	20/400" (33-171 Filefiel 20/400"	30°40' 00-750 75-86 30°40'	30°430' 30-100 Yudda 30°430'	30°-00' 00-11 76-04 30°-00'	30'40" (80-71 FaeMa 30'40"	20%20* 035-04 75-044 20%20*	000-000 76-000 36"x50"	\bigotimes	30'-FI	\approx	\leq	\approx	\approx	\geq	\leq	\geq	\approx	\geq
KE FLOOR	1411. 1421	90,490, 000-000	(8)- T]	30- T	30,40,	30'40'	00 -17	X	00-11 (-044 30'40'	00-01 faile	00-19 //ulfel 30%0/	00-11 n=44	00-17 field 30/40*	00-100 Fueld 301-00"	30-100 79-14	ap-ri ry-fiel achao'	30-71 fi=44	00-11 (u-14 30'40'	0.00-000 fe-040 34%30*	\bigotimes	30 -11	\approx	\leq	\approx	\approx	\approx	\leq	\approx	\approx	\geq
e ruose	1911.	(76)-elto	30'40'	(0- P)	(0)-0]	00-11	30%80" 00%49 Holt 6	X	00-11 /autual	30-44 Cudio 20'v30'	Condial Condial	00-19 fueld	03-01 fueled 30/ad	(ga)-sta Faillet	(0)-100 70080	89-44 7.484	00-11 Familial 50'40'	00-01 7:000	COD-100 Faither	\leq	97°	>	\geq	\geq	\geq	\geq	\approx	\geq	\geq	\geq
T PLOOP	1000	36'-20' 020 -1 10	30'40' 00- 1 1	so'ao' 10-h	ao-in	30'40' 00 -i h	X	30%34" 300-113	30'40' 00-11 fo-6b	03-41 63-41 64-66	30°40' 03-41 10 -6 4	ap-in rotie	co-in rutia	so'vad" cass-tao forthe	achad act-int forda	sofies" as-in fordia	do-in fu-th	so'as' co-in fortia	36"x30" 0203-850 Fortier	30'40' (23:-16	\boxtimes	\geq	>	\geq	\geq	\geq	\geq	$> \leq$	\geq	\geq
NUM TO DENTICH DOV	500 C	(16) -1 65	ш -И	00 -11	40 -11	ao -1 4	\times	93 -H	a)-#1	a:-H	<i>ш</i> н	00 -11	00-11	(10) -1 10	00 - 60	61-11	60-41	ao-14	003 - 80	cz:+6	65 -1 4	1/A	Ka	1/4	1/4	NA.	H/A	1/4	1/4	H/4
LUM SOMETICS FOR MET TIPEAL D COLUMN STORE SEE FLAST FOR SEE FLAST FOR SEE FLAST FOR COLUMN DUPTOR	NON OF LUNN NOT THE CO. I COATEGE	A DELL HE HA	SEUD BA	IN DURING O	INCOME N	ST MERCON UT. Date of Sch Date for Shi	N IFFILIE. INF STAD EN	L DETALS.															CONTRACT		FER TO ARC	NOT TYPICALI HITECTURAL CATIONS:				

Figure 15 - column schedule

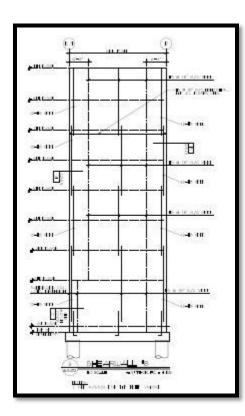


Figure 17 - typical 9 floor shear shear wall

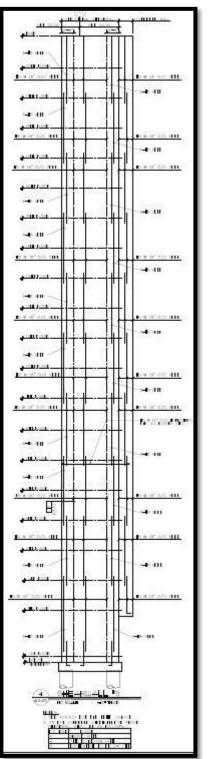
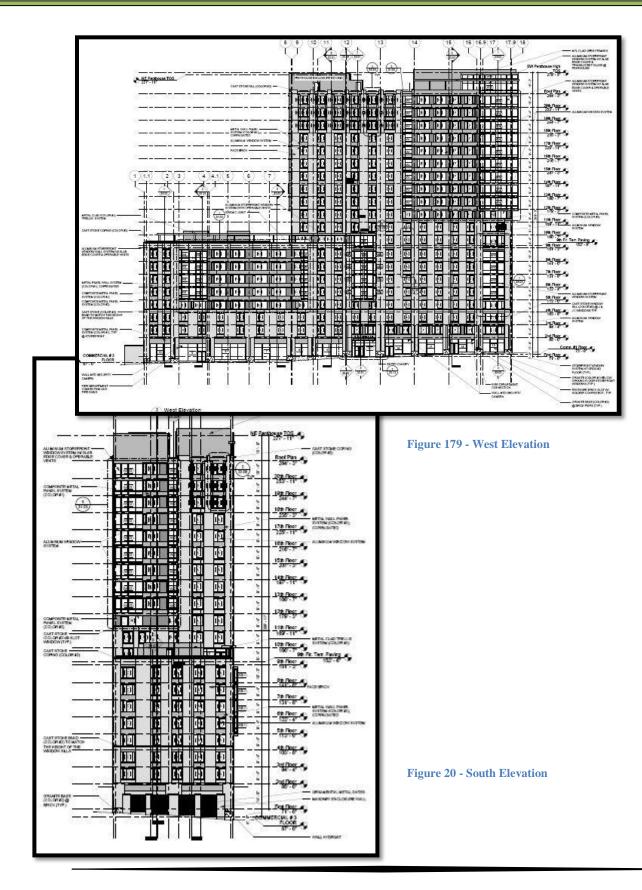



Figure 16 - 22 floor shear wall

Technical Report 1

